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Abstract

A material body with smoothly distributed microstructure can be seen geometrically as a fibration
or, when the symmetry group is specified, as a fiber bundle. Within this very general framework, we
present a geometric description of such material bodies in terms of fiber jets. We introduce the notion
of fiber frame and construct the corresponding Lie groupoid and fiberG-structure. Then, physical
properties of a material body with microstructure as uniformity and homogeneity can be translated
in geometrical terms as transitivity for the Lie groupoid or integrability for the fiberG-structure.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Modern theories of uniformity and homogeneity of material bodies consider the bodyB

as the base manifold of a fiber bundle. For materially simple bodies, this fiber bundle has
been usually taken to be the tangent bundle or the principal frame bundle by Kondo[7] and
his collaborators in Japan, followed by Eshelby, Bilby, Kroener[8] and others in Europe. A
rigorous geometric formulation, within the context of continuum mechanics, for concepts
as uniformity and homogeneity of a materially simple body has been given by Noll[15] and
Wang[17]. The formalism introduced by these authors has been followed by many gener-
alizations that comprise theories of higher-grade materials[9–11]and generalized Cosserat
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bodies,[2,3,5,6]. In these generalizations the material body is viewed as a classical body
endowed with some kind of internal structure (or microstructure). Whereas for materially
simple bodies the fiber-bundle formalism was used merely as a mathematical substratum to
allow for the definition of so-calledmaterial connectionsand other such geometrical quanti-
ties, in the case of bodies with internal structure it is the body itself that needs to be regarded
as a fiber bundle, whose typical fiber carries the microstructural information. To develop a
geometric theory of uniformity and homogeneity from this concept, it becomes necessary,
therefore, to consider further bundles whose base manifold is itself a fiber bundle. In this pa-
per we propose a general theory whereby the nature of the typical fiber of the body bundle is
not specified a priori. Previous attempts in the same direction have been carried out in[1,4].

In the first part of this paper we introduce and study some geometric objects such as fiber
jets, the fiber Lie groupoid, the fiber frame bundle and the fiberG-structure. First section
in part I is a general overview on fibrations and fiber bundles, as it has been presented in
[13,14]. The concept of fiber jet of a fiber bundle, which is the mathematical background in
our paper, is introduced inSection 2.2, following some work developed in[16]. Within this
very general framework, we study inSection 2.3the Lie groupoid one can associate to a
fiber jet, following the general theory on Lie groupoids from[12]. In the last section of first
part we introduce the concept of fiberG-structure and determine necessary and sufficient
conditions for the integrability of such structure. All geometric objects introduced in the
first part are related in second part with material properties of a body with microstructure.
In this direction we prove that the uniformity of a body with microstructure translates into
the fact that associated groupoid is a Lie groupoid, while the homogeneity corresponds to
the integrability of a fiberG-structure. The correspondence between the two parts of the
paper follows the outline of the theory developed in[1]. For the particular case when the
microstructure is linear the theory developed in this paper reduces to the theory of second
order materials developed in[2,10].

2. Part I. Geometric background on fiber jets

2.1. Fibrations and fiber bundles

Let B andF be two differentiable manifolds of dimensionsn andm, respectively, and
let M be a nonempty set andπ : M → B is surjective map. The collection(M, π,B, F) is
said to be afibration if the following conditions are satisfied:

(i) B can be covered by a family of open setsU,V,W, . . . , such that for every open setU
of the family, there exists a bijectionτU : π−1(U) → U × F that makes the following
diagram commutative:

(ii) If x ∈ U ∩ V , τU : π−1(U) → U × F andτV : π−1(V) → V × F , thenτV,x ◦ τ−1
U,x is a

diffeomorphism of the manifoldF .



I. Bucataru, M. Epstein / Journal of Geometry and Physics 52 (2004) 57–73 59

HereτU,x is the restriction of the bijectionτU to the fiberπ−1(x). Consequently,τU,x :
π−1(x) → F is a bijection, too. The pairs(U, τU) are called fibered charts.

Next we shall see that this definition allows us to define aC∞ structure onM such that
the mapπ is a submersion and each fiberπ−1(x) is an imbedded submanifold ofM (see
[14, Chapter 1]).

Consider{(Uα, φα)}α∈I a smooth atlas of the manifoldB such that the covering{Uα}α∈I
is finer than the coveringU,V,W, . . . from (i), and let{(Vβ, ψβ)}β∈J be an atlas of the
smooth manifoldF . Then a base for a topology onM is given by the sets

Wαβ = τ−1
U (Uα × Vβ) ⊂ π−1(U),

whereUα is such thatUα ⊂ U. With respect to this topology onM, the bijectionτU :
π−1(U) → U × F is a homeomorphism. If we denote byταβU the restriction ofτU to Wαβ,

thenΦαβ = (φα × ψβ) ◦ τ
αβ
U is a homeomorphism fromWαβ to an open set ofRn+m.

This way we have a smooth atlas{(Wαβ,Φαβ)}(α,β)∈I×J on M, with respect to which
M is a differentiable manifold of dimensionn + m. Then the mappingsτU, τV , . . . are
diffeomorphisms,π : M → B is a smooth submersion and the smooth structure ofM is
unique with these properties.

For the fibration(M, π,B, F), the manifoldM is called the total space,B is the base
manifold,F the typical fiber andπ the canonical submersion. For everyx ∈ B, π−1(x) is
an imbedded submanifold ofM that is diffeomorphic toF and it is called the fiber atx,
sometimes denoted byFx. The trivial example of a fibration is given by(B×F,pr1, B, F).
In the second part of this paper we shall consider a special fibration(M, π,B, F), where
the base manifoldB has a global chart. We shall assume also that the total spaceM of the
fibration is diffeomorphic to the trivial fibrationB × F , which means thatM is globally
trivializable. But while the trivial fibration has a particular singled-out trivialization, a
globally trivializable fibration does not.

From now on, we adopt the convention that the indicesi, j, k, l, . . . vary within the
range 1, . . . , n, while the indicesa, b, c, d, . . . vary within the range 1, . . . , m. The local
coordinates onB are denoted by(xi), the local coordinates onF are denoted by(ya) and
consequently the induced local coordinates on the total spaceM are(xi, ya). With respect
to these, the submersionπ : M → B has the equationsπ : (xi, ya) �→ (xi). A change of
local coordinates(xi, ya) → (x̃i, ỹa) around a pointp ∈ M is given by a set ofn + m

smooth functions:

x̃i = x̃i(xj), rank

(
∂x̃i

∂xj

)
= n, ỹa = ỹa(xj, yb), rank

(
∂ỹa

∂yb

)
= m. (2.1)

For every fixed(xj) ∈ B, ỹa = ỹa(xj, yb) is the local representation of the diffeomorphism
τU,x ◦ τ−1

V,x of the typical fiberF .

We may useEqs. (2.1)as the equations of a fibered mapτU : π−1(U) → U × F from a
fibered chart(U, τU). As it is known, see[13], for a smooth, finite dimensional manifoldF ,
the group Diff∞(F)of all diffeomorphisms ofF is an open subset of the infinite dimensional
manifoldC∞(F, F)of all smooth maps ofF , with theC∞-Whitney topology. Consequently,
Diff ∞(F) is an open submanifold ofC∞(M,M), where the composition and the inverse
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map are smooth maps. Then for the infinite dimensional Lie group Diff∞(F) its Lie algebra
is the vector spaceXc(F) of all smooth vector fields onF with compact support.

Consider now a Lie groupG, which is a Lie subgroup of the Lie group offiber diffeo-
morphismsDiff ∞(F). A fibration (M, π,B, F) is said to be afiber bundlewith structural
groupG (we denote it by(M, π,B, F,G)) if:

(iii) The diffeomorphismsτU,x ◦ τ−1
V,x of F belong toG and the mapgVU : V ∩ U → G,

given bygVU(x) = τU,x ◦ τ−1
V,x is smooth for every two fibered charts(U, τU), (V, τV )

for whichU ∩ V �= ∅.

For a fiber bundle, the structural groupG acts transitively on the typical fiberF through
the left translationLg : y ∈ F �→ Lg(y) = gy ∈ F ∀g ∈ G. With these notations, the last
m equations of(2.1)can be written now as̃ya = Lg(y

b).
If for a fiber bundle(M, π,B, F,G) the typical fiberF coincides with the structural group
G, then the fiber bundle is called aprincipal fiber bundle.

2.2. Fiber jets

Let us consider now a fibration(M, π,B, F) and the trivial fibration(Rk ×F,pr1,R
k, F).

For everyx ∈ B andk ∈ {1, . . . , n}, denote byCk,x(M) the set of all differentiable fiber
morphismsκ̃ from a neighborhoodI × F of {0} × F in R

k × F into a neighborhood of
π−1(x) in M such that:

(i) k̃({0} × F) = π−1(x).
(ii) The restriction ofκ̃ to {ξ} × F is a diffeomorphism,∀ξ ∈ I ⊂ R

k.

If a fiber morphismκ̃ : I × F → M belongs toCk,x(M), then we denote byκ : I ⊂
R
k → B the projected map of̃κ. This means that the following diagram is commutative:

We have also thatκ(0) = x andk̃(ξ, ·) is a diffeomorphism from{ξ}×F toπ−1(κ(ξ)). Then

for any fibered chart(U, τU) atx ∈ B, the mapτU,x ◦ k̃(0, ·) is a diffeomorphism ofF . This
is equivalent to say that there is a fibered chart(U, τU) atx ∈ B such thatτU,x ◦ κ̃(0, ·) is the
identity ofF . This way we have a mapτU,x◦κ̃(·, ·) : ξ ∈ I ⊂ R

k �→ τU,x◦κ̃(ξ, ·) ∈ Diff ∞(F)

that passes through IdF whenξ = 0.
Consider now(M, π,B, F,G) a fiber bundle with structural groupG. A fiber morphism

κ̃ ∈ Ck,x(M) if in addition we ask that:

(iii) For any fibered chart(U, τU) at x ∈ B, the mapτU,x ◦ κ̃(ξ, ·) is an element of the
structural groupG, ∀ξ ∈ I.

We can choose a fibered chart(U, τU) atx ∈ B such thatτU,x ◦ κ̃(0, ·) is the neutral element
of G. Then,τU,x ◦ κ̃(·, ·) is a map from a neighborhood of 0 inRk intoG that passes through
the neutral elemente of G whenξ = 0.
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Within the setCk,x(M) we define an equivalence relation∼1,x as follows: letκ̃1, κ̃2 ∈
Ck,x(M), thenκ̃1 ∼1,x κ̃2 if

κ̃1(0, f) = κ̃2(0, f) and
∂κ̃1

∂ξα
(0, f) = ∂κ̃2

∂ξα
(0, f) ∀α ∈ {1, . . . , k} ∀f ∈ F.

Here(ξα) are the Cartesian coordinates onR
k.

If κ̃1, κ̃2 ∈ Ck,x(M) are∼1,x-equivalent andκ1, κ2 are their projections onB thenκ1
andκ2 determine the same first order jet, that isκ1(0) = κ2(0) = x and(∂κ1/∂ξ

α)(0) =
(∂κ2/∂ξ

α)(0).
An equivalence class ofCk,x(M) with respect to∼1,x will be denoted byJ1

k,xκ̃ and will
be called afiber k-vectoratx ∈ B. The set of all fiberk-vectors atx ∈ B will be denoted by
T 1
k,x(M,B)and it is called thefiber k-tangent spaceatx ∈ B. For everyx ∈ B, we can always

find a fibered chart(U, τU) in x such thatτU,x ◦ k̃(0, ·) is the identity map of the typical
fiberF . Then(∂κ/∂ξα)(0) arek-vectors tangent atx toB, k̃(0, ·) is a diffeomorphism from
π−1(x) toF and(∂κ̃/∂ξα)(0, ·) is an element ofL(Rk,Xc(F)). With these considerations we
have that any fibered chart(U, τU) atx ∈ B induces a bijection between the fiberk-tangent
spaceT 1

k,x(M,B) andL(Rk,Rn) × Diff ∞(F) × L(Rk,Xc(F)).
In coordinates, two fiber morphisms̃κ1 and κ̃2 from Ck,x(M) are ∼1,x-equivalent if

κ̃1(ξ, f) = (xi1(ξ
α), ya1(ξ

α, f)) andκ̃2(ξ, f) = (xi2(ξ
α), ya2(ξ

α, f)) satisfy

xi1(0) = xi2(0), ya1(0, f) = ya2(0, f) ∀f ∈ F,
∂xi1

∂ξα
(0) = ∂xi2

∂ξα
(0),

∂ya1

∂ξα
(0, f) = ∂ya2

∂ξα
(0, f) ∀f ∈ F.

Consequently, we can identify a fiberk-vectorJ1
k,xκ̃ with a triple ((∂xi/∂ξα)(0), ya(0, ·),

(∂ya/∂ξα)(0, ·)). Here(∂xi/∂ξα)(0), α ∈ {1, . . . , k} arek-vectors tangent atx toB, ya(0, ·)
is a diffeomorphism ofF , while (∂ya/∂ξα)(0, ·) is an element ofL(Rk,Xc(F)).

When(M, π,B) is a fiber bundle with structural groupG, we saw that we can always find
a fibered chart(U, τU) at x ∈ B such thatτU,x ◦ ya(0, ·) is the neutral element ofG. Then
we can identify(∂ya/∂ξα)(0, ·) with k elements of the Lie algebraLG of the Lie groupG.
This is equivalent to say that(∂ya/∂ξα)(0, ·) is an element ofL(Rk, LG). Consequently, a
fibered chart(U, τU) at x ∈ B determines a bijection between the fiberk-tangent space at
x ∈ B, T 1

k,x(M,B) andL(Rk,Rn) × G× L(Rk, LG).

If we denote byT 1
k (M,B) = ⋃

x∈B T 1
k,x(M,B), then(T 1

k (M,B), τ, B) is a fiber bundle

overB, with typical fiberL(Rk,Rn)×G×L(Rk, LG) and structural group Gl(n,R)×G×
L(Rn, LG).

The structural group Gl(n,R) × G × L(Rn, LG) acts on the typical fiberL(Rk,Rn) ×
G× L(Rk, LG) through the left:

(A, g, α)(a, g′, u) = (Aa,gg′, αa + (Lg)∗u). (2.2)

Here(Lg)∗ is the automorphism of the Lie algebraLG induced by the left translationLg.
The composition of the group Gl(n,R) × G× L(Rn, LG) is given by

(A, g, α)(B, g′, β) = (AB,gg′, αB + (Lg)∗β). (2.3)
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The neutral element is(In, e,0)and the inverse of an element(A, g, α) is given by(A, g, α)−1

= (A−1, g−1,−(L−1
g )∗αA−1).

We may remark here that the multiplication law(2.3)can be defined also on Gl(n,R)×
Diff ∞(F) × L(Rn,Xc(F)), and in this case(Lg)∗ is the automorphism of the Lie algebra
Xc(F) induced by the left translationLg, for an arbitrary elementg ∈ Diff ∞(F). With
respect to this multiplication law we have thatL(Rk,Rn) × Diff ∞(F) × L(Rk,Xc(F))
is also a group, where the multiplication law and the inverse are smooth, so it is a in-
finite dimensional Lie group. Consequently, we have that for the general case, a fibra-
tion (M, π,B, F) determine a fiber bundle(T 1

k (M,B), τ, B) overB with the typical fiber
L(Rk,Rn) × Diff ∞(F) × L(Rk,Xc(F)) and the structural group Gl(n,R) × Diff ∞(F) ×
L(Rn,Xc(F)).

An arbitrary Lie subgroup of Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)) has the formG1 ×
G2 ×Σ, whereG1 andG2 are Lie subgroups of Gl(n,R) and, respectively, Diff∞(F) and
Σ is a subset ofL(Rn,Xc(F)).

Next we shall pay attention to the extreme cases whenk = 1 andk = n. Fork = 1 a first
order fiber jetJ1

1,xc̃ is called afiber vectorat x ∈ B. The set of all fiber vectors atx ∈ B

is denoted byT 1
1,x(M,B) and it is called the fiber tangent space. Any fibered cart(U, τU)

at x ∈ B induces a bijection between the fiber tangent spaceT 1
1,x(M,B) andR

n × G ×
LG.

For k = n we consider first order fiber jetsJ1
n,xφ̃ of local fiber diffeomorphisms̃φ from

a neighborhood of{0} × F in R
n × F into a neighborhood ofπ−1(x) in M. Such a fiber

jet is called a fiber frame atx ∈ B, the set of all first order fiber frames atx is denoted by
Fx(M,B). This way we can construct a principal fiber bundleF(M,B) = ⋃

x∈B Fx(M,B)

over the base manifoldB with structural group Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)).
We call this principal fiber bundle thefiber frame bundleof the fibration(M, π,B, F).
For a fiber bundle(M, π,B, F,G) the corresponding fiber frame bundle has the structural
group Gl(n,R) × G × L(Rn, LG) which is a Lie subgroup of Gl(n,R) × Diff ∞(F) ×
L(Rn,Xc(F)).

A fiber G-structure of the fibration(M, π,B, F) (or of the fiber bundle(M, π,B, F,G))
is a reduction of the structural group Gl(n,R)× Diff ∞(F)×L(Rn,Xc(F)) (or Gl(n,R)×
G × L(Rn, LG)) to a Lie subgroupG = G1 × G2 × Σ. The corresponding fiber frame
bundle to aG-structure will be denoted byFG(M,B).

As an example, let us apply all the above considerations to the tangent bundle
(TB, π, B) of a manifoldB. The typical fiber is thenF = R

n and the structural group
is G = Gl(n,R). Then the fiber tangent bundle(T 1

1 (TB, B), τ, B) has as typical fiber
R
n × Gl(n,R) × Mn(R) and the structural group is Gl(n,R) × Gl(n,R) ×

L2(Rn,Rn). Then the fiber frame bundleF(TB, B) has as typical fiber and structural
group Gl(n,R) × Gl(n,R) × L2(Rn,Rn) and consequently it is isomorph to the sec-
ond order nonholonomic frame bundleF2(B) of the manifoldB. Consequently, a fiber
G-structureFG(TB, B) is then a second order nonholonomicG-structure, whereG =
G1 × G2 × Σ, G1 and G2 being Lie subgroups of Gl(n,R) and Σ is a subset of
L2(Rn,Rn). In Section 2.4we shall see that the integrability of a fiberG-structure
is equivalent to the integrability of the corresponding second order nonholonomic
G-structure.
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2.3. The Lie groupoid of fiber jets

Let us consider(M, π,B, F) a fibration. For a local diffeomorphism̃φ ofM that preserves
the fiber structure we denote byφ its projected local diffeomorphism of the base manifoldB.
For any pair of pointsx1, x2 of B, denote byCx1,x2(M) the set of all local diffeomorphisms
φ̃ of M that preserves the fiber structure and such that its projectionφ mapsx1 to x2.

Then we say that̃φ, ψ̃ ∈ Cx1,x2(M) determine the same first order fiber jet if there is a
local diffeomorphismκ̃ from a neighborhood of{0} × F in R

n × F into a neighborhood
of π−1(x1) in M that preserves the fiber structure and the mapsφ̃ ◦ κ̃ andψ̃ ◦ κ̃ have the
same first order fiber jet as we have defined it in the above section. Then, according to
the previous section this means thatφ̃ ◦ κ̃ ∼1,x2 ψ̃ ◦ κ̃. It is easy to see that the above
definition is independent of the local diffeomorphismκ̃. We shall denote byJ1

x1,x2
φ̃ the first

order fiber jet of a local fiber diffeomorphism that mapsπ−1(x1) into π−1(x2). Consider
now the union of all collections of fiber jets of fiber morphisms that mapx1 to x2 for all
possible pairsx1, x2 of B. We denote this union byJ1(M,B) and we call it the space of first
order fiber jets ofM. This space has two canonical projection maps. The first projection
is α : J1(M,B) → B and points at the sourcex1 of a fiber jetJ1

x1,x2
φ̃, while the second

projectionβ : J1(M,B) → B points to the target pointx2.
ConsiderJ1

x1,x2
φ̃andJ1

x2,x3
ψ̃ two first order fiber jets such thatα(J1

x2,x3
ψ̃) = β(J1

x1,x2
φ̃) =

x2. Then, we define the product of the fiber jets through

J1
x2,x3

ψ̃ · J1
x1,x2

φ̃ = J1
x1,x3

(ψ̃ ◦ φ̃). (2.4)

Theorem 2.1. The setJ1(M,B) of first order fiber jets of M with the canonical projections
α andβ and the multiplication law defined in(2.4)has a canonical structure of Lie groupoid
over the base manifold B.

Proof. We have to check first that all axioms for a groupoid are satisfied. We refer the
reader to[12] for a good reference on groupoids; see also[2]:

(i) According to the definition of the multiplication law(2.4)we have that for two elements
Z,Z′ ∈ J1(M,B), the productZ · Z′ is defined if and only ifα(Z) = β(Z′) and then
β(Z · Z′) = β(Z) andα(Z · Z′) = α(Z′).

(ii) The triple productZ · (Z′ ·Z′′) is defined if and only if(Z ·Z′) ·Z′′ is also defined and,
when one of them is defined, the associative lawZ · (Z′ · Z′′) = (Z · Z′) · Z′′ holds.

(iii) For eachx ∈ B there exists an element 1x = J1
x,xφ̃, φ̃ is the identity map of a

neighborhood ofπ−1(x), such that:

• α(1x) = β(1x) = x;
• if Z · 1x is defined thenZ · 1x = Z;
• if 1x · Z is defined then 1x · Z = Z.

(iv) For eachZ = J1
x1,x2

φ̃ ∈ J1(M,B), there existsZ−1 = J1
x1,x2

φ̃−1 ∈ J1(M,B) such
thatZ−1 · Z = 1x1 andZ · Z−1 = 1x2.

So, we proved thatJ1(M,B) is a groupoid overB.
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Now, we introduce aC∞-differentiable structure onJ1(M,B) as follows.
For every pair of pointsx1, x2 ∈ B, let (U1, τU1) and(U2, τU2) be two fibered charts

of the fibered bundle such thatx1 ∈ U1 andx2 ∈ U2. The pair of fibered charts(U1, τU1)

and(U2, τU2) induces a bijection between the subsetα−1(U1)∩ β−1(U2) of J1(M,B) and
U1 × U2 × Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)), the bijection being given by

J1
x̃1,x̃2

φ̃ �→ (x̃1, x̃2, J
1
x̃1,x̃2

(τU2,x̃2 ◦ φ̃ ◦ τ−1
U1,x̃1

)) ∀x̃1 ∈ U1, x̃2 ∈ U2. (2.5)

The above defined bijection transfers the differentiable structure ofU1 ×U2 × Gl(n,R)×
Diff ∞(F)×L(Rn,Xc(F)) to α−1(U1)∩ β−1(U2). This way,J1(M,B) became a differen-
tiable manifold. Now it is easy to see that the mapsα, β : J1(M,B) → B are submersions.
As Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)) is a Lie group, then according to(2.5), the
multiplication law(2.4) of J1(M,B) and the mapZ ∈ J1(M,B) �→ Z−1 ∈ J1(M,B)

are compatible with the differentiable structure ofJ1(M,B). Consequently, we have that
J1(M,B) is a differentiable groupoid overB. Also, we have from(2.5)that the mapα×β :
J1(M,B) → B×B, given by(α×β)(Z) = (α(Z), β(Z)) is a submersion, so the differen-
tiable groupoidJ1(M,B) is a Lie groupoid. More than that, asα × β is surjective, the Lie
groupoidJ1(M,B) is a transitive Lie groupoid. �

Choosex ∈ B arbitrarily and define

J1
x (M,B) = {Z ∈ J1(M,B), α(Z) = x} and

G(x) = {Z ∈ J1(M,B), α(Z) = β(Z) = x}.

Proposition 2.2. G(x) is a Lie group andJ1
x (M,B) is a principal fiber bundle over B with

structural groupG(x) and projectionβ.

Proof. According to(2.4) and (2.5), for a fixed fiber chart(U, τU) at x ∈ B, we have that
the map:

Z ∈ G(x) �→ J1
x,xτU,x ◦ Z ◦ J1

x,xτ
−1
U,x ∈ Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)) (2.6)

is a bijection that transfers the structure of the Lie group Gl(n,R)×Diff ∞(F)×L(Rn,Xc(F))
toG(x) such that the map(2.6)becomes an isomorphism of Lie groups.

As J1
x (M,B) = α−1(x) from (2.5)we can see that if we fix̃x1 = x then we have a map

from β−1(U2) to U2 × Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)), that is a bijection. If we
consider the set of all such maps whenU2 coversB, we have an atlas of fibered charts for a
principal fibered structure onJ1

x (M,B) overB with the projectionβ. The above considered
maps fromβ−1(U2) to U2 × Gl(n,R) × Diff ∞(F) × L(Rn,Xc(F)) are local trivializa-
tions. �

Remark 2.3. For an elementx ∈ B, the setG(x) = α−1(x)∩β−1(x) consists of first order
fiber jets of all local diffeomorphisms of a neighborhood ofπ−1(x), so this is diffeomorphic
to the Lie group Gl(n,R)× Diff ∞(F)×L(Rn,Xc(F)), the diffeomorphism between these
two Lie groups being given by(2.6). The groupG(x) is called the isotropy group atx ∈ B

of the groupoidJ1(M,B).
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If we have a fiber bundle(M, π,B, F,G), the isotropy groupG(x) at x ∈ B of the Lie
groupoidJ1(M,B) is diffeomorphic with the Lie group Gl(n,R) × G× L(Rn, LG).

Remark 2.4. The principal fiber bundleJ1
x (M,B) from the above proposition is diffeo-

morphic to the fiberG-structureFG(M,B) we introduced inSection 2.2, whereG =
Gl(n,R) × G× L(Rn, LG).

2.4. Integrability conditions for a fiberG-structure

Consider now a fiber bundle(M, π,B, F,G) and a fiberG-structureFG(M,B). This is a
principal fiber bundle with structural groupG = G1 × G2 × Σ, the projectionβ and the
base manifoldB, whereG1 is a Lie subgroup of Gl(n,R), G2 a Lie subgroup ofG andΣ
a subset ofL(Rn, LG).

For the trivial fiber bundle(Rn×F,pr1,R
n, F,G) its principal fiber bundleF(Rn×F,Rn)

is isomorphic toRn × Gl(n,R)× G×L(Rn, LG). By this isomorphism we can transport a
Lie subgroupG = G1×G2×Σ of Gl(n,R)×G×L(Rn, LG) to obtain a fiberG-reduction
of F(Rn × F,Rn). The fiberG-structure we defined above is called theflat (or integrable)
G-structureonR

n and we denote it byFG(Rn).

Definition 2.5. A fiber G-structureFG(M,B) is said to be integrable if it is locally iso-
morphic to the flatG-structure onRn.

Theorem 2.6. A fiber G-structureFG(M,B) is integrable if and only if around every point
in B, there is a fibered chart(U, τU) of the fibered structure(M, π,B, F,G) such that

J1τ−1
U : x ∈ U → J1

x,xτ
−1
U (2.7)

is a local section of the principal fiber bundleFG(M,B).

Proof. According to the proof ofProposition 2.2for every point inB, a fibered chart(U, τU)
of the fibered bundle(M, π,B) determines a fibered chart

Zx ∈ β−1(x) ⊂ β−1(U)

�→ J1
x,xτU,x ◦ Zx ◦ J1

x,xτ
−1
U,x ∈ U × Gl(n,R) × G× L(Rn, LG). (2.8)

Now, if we assume that for every point inB, there is a fibered chart(U, τU) such that
Z = J1τ−1

U : x ∈ U �→ Zx = J1
x,xτ

−1
U,x ∈ G(x) is a local section ofFG(M,B), then

(2.8) is an isomorphism betweenβ−1(U) andU × Gl(n,R) × G × L(Rn, LG). Using a
differentiable partition of unity, we can construct from these a local isomorphism between
the fiberG-structureFG(M,B) and the flatG-structure onRn.

Conversely, suppose that the fiberG-structure is integrable. So for every point inB, there
is an open setU ⊂ B and an isomorphism of fiberG-structures:

φU : β−1(U) → χ(U) × G1 × G2 × Σ,

where(U, χ) is a local chart of the base manifoldB. We have also thatx ∈ B �→ (x, In, e,0)
is a section of the flatG-structureFG(Rn) overχ(U). By composition withφ−1

U we get
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a local section ofFG(M,B) overU that is the first order fiber jet of a fibered mapτ−1
U :

U × F → π−1(U). �

A local section of the principal fiber framesF(M,B) (or a local field of fiber frames on
B) can be expressed in local coordinates as

P(x) = (Gi
j(x), y

a(x, ·), La
j(x, ·)) ∀x ∈ U ⊂ B. (2.9)

HereGi
j(x) is a field of frames onU, (ya(x, ·))a=1,m are them-components of a diffeo-

morphism of the fiberFx and for allj = 1,m, (La
j(x, ·)) arem-vector fields with compact

support onF . For a field of fiber framesP onB, we can consider also the inverse of the
field,P−1, defined by

P−1(x) =
(
(G−1)

j

k(x), ỹ
b(x, ·), (L−1)bk := −∂ỹb

∂ya
La
i

∂x̃i

∂xj

)
. (2.10)

Theorem 2.7. A fiber G-structureFG(M,B) is integrable if and only if for any point in B
there is an open setU ⊂ B and a field of fiber G-frames on U

P(x) = (Gi
j(x), y

a(x, ·), La
j(x, ·))

for which the following tensors vanish:

1

2
Gi

j(x)

(
∂(G−1)

j

k

∂xl
− ∂(G−1)

j

l

∂xk

)
,

1

2

∂ya

∂ỹb

(
∂(L−1)bk

∂xl
− ∂(L−1)bl

∂xk

)
and

∂ya

∂ỹb

(
∂(L−1)bj

∂yc
− ∂2ỹb

∂yc∂xj

)
. (2.11)

Proof. According toTheorem 2.6we have that the fiberG-structureFG(M,B) is integrable
if and only if for the field of fiber framesP there is a fibered chart(U, τU) such that

P(x) = J1
x,xτ

−1
U ∀x ∈ U.

If the fibered mapτU : (xi, yb) ∈ π−1(U) �→ (x̃i, ỹa) ∈ U × F has the equations

x̃i = x̃i(xj), rank

(
∂x̃i

∂xj

)
= n, ỹa = ỹa(xj, yb), rank

(
∂ỹa

∂yb

)
= m,

then we have to prove that the tensors(2.11)vanish if and only if

(G−1)ij = ∂x̃i

∂xj
, (L−1)aj = −∂ỹa

∂yb
Lb
i

∂x̃i

∂xj
. (2.12)

The tensors(2.11)are the torsion components of the complete parallelism (linear connec-
tion)D onπ−1(U) ⊂ M induced by the following field of frames onπ−1(U):

F(x, y) =

 Gi

j(x) 0

La
j(x, y)

∂ya

∂ỹb
(x, y)


 . (2.13)
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This means thatHi = (G−1)
j
i (∂/∂x̃

j) + (L−1)bi (∂/∂ỹ
b) andVa = (∂ỹb/∂ya)(∂/∂ỹb) is a

field of frames onπ−1(U). Then letD be the unique linear connection for which the frame
{Hi, Va} is covariant constant, that isDZHi = DZVa = 0∀Z.

The linear connectionD is curvature free. If we express the torsionT(Z,W) = DZW −
DWZ − [Z,W ] with respect to the frame{Hi, Va}, then there are only three nonzero com-
ponents and these are the tensors(2.11). �

Next we shall apply the theory developed in this section for the particular case when the
fiber bundle(M, π,B) is the tangent bundle(TB, π, B). Let this be the case. As we have
already seen inSection 2.2, the fiber frame bundleF(TB, B) has as typical fiber and struc-
tural group Gl(n,R)× Gl(n,R)×L2(Rn,Rn). But Gl(n,R)× Gl(n,R)×L2(Rn,Rn) is
the structural group of the second order nonholonomic frame bundleF2(B) of the manifold
B. Consequently we have that the fiber frame bundleF(TB, B) and the second order non-
holonomic frame bundleF2(B) are diffeomorphic. Consider nowG = G1 ×G2 ×Σ a Lie
subgroup of Gl(n,R)×Gl(n,R)×L2(Rn,Rn). A fiberG-structureFG(TB, B) determines
a second order nonholonomicG-structureF2

G(B) and the integrability of one of these two
implies the integrability of the other one.

Due to the particular form of the typical fiberR
n, a local section of the principal frame

bundleF(TB, B) and hence a local section of the second order nonholonomic frame bundle
F2(B) has the form

P(x) = (Gi
j(x),H

a
b (x), L

a
bj(x)).

The inverse of this local section is given by

P−1 = ((G−1)
j

k, (H
−1)bc, (L

−1)bck := −(H−1)baL
a
di(H

−1)dc (G
−1)

j

k).

Theorem 2.8has the following version.

Theorem 2.8. A fiber G-structureFG(TB, B)or the second order nonholonomic G-structure
F2
G(B) is integrable if and only if for any point in B there is an open setU ⊂ B and a field

of fiber G-frames on U, P(x) = (Gi
j(x),H

a
b (x), L

a
bj(x)) for which the following tensors

vanish:

1

2
Gi

j(x)

(
∂(G−1)

j

k

∂xl
− ∂(G−1)

j

l

∂xk

)
, Ha

b

(
(L−1)bck − ∂(H−1)bc

∂xk

)
. (2.14)

Proof. Due to the particular form of the sectionP , the second tensor(2.11) vanishes if
and only if the third one does. The tensors(2.13)vanish if and only if there exists a fibered
diffeomorphism

x̃i = x̃i(xj), rank

(
∂x̃i

∂xj

)
= n, ỹa = Ha

b (x
j)yb, rank(Ha

b ) = n,

such thatGj
i = ∂xj/∂x̃i andLa

bj = ∂Ha
b /∂x

j. The fiber diffeomorphism(2.14) assure
the integrability of the fiberG-structureFG(TB, B) or the second order nonholonomic
G-structureF2

G(B). �
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3. Part II. Bodies with microstructure

3.1. Configurations and first grade response for a body bundle

In continuum mechanics a material bodyB, that represents themacromedium, is rep-
resented by a three-dimensional manifold which can be covered with just one chart,κ :
B → R

3. Such a chart is called a configuration of the macromedium. We assume that the
bodyB has a smoothly distributed microstructure represented by a typical fiberF , that is
anm-dimensional differentiable manifold. The geometric object that corresponds to this
concept is a fiber bundle(M, π,B, F). For this we assume also that the body bundleM is
globally trivializable. This means that there is a global fibered chart

τ : M → B × F.

If we consider the composition ofκ× IdF by τ we have aconfigurationof the body bundle:

κ̃ = (κ × IdF ) ◦ τ : M → R
3 × F.

When there is no danger of confusion, we shall identify the body bundleM with one of its
configuration,M ≡ κ̃0(M) = R

3 × F . Such a configuration is called areference config-
uration. A change of configurations, or adeformationis defined then as the composition
κ̃◦κ̃−1

0 : M → R
3×F . If the reference configuratioñκ0 is fixed, we refer to the deformation

κ̃ ◦ κ̃−1
0 through the configuratioñκ.

LetXI, YA andxi, ya be the local coordinate systems in the body bundle and in the cross
productR3×F . From now on, we adopt the convention that the indicesH, I, J,K,L, h, i, j,

k, l vary within the range 1,2,3, while the indicesA,B,C,D,E, a, b, c, d, e vary within
the range 1, . . . , m. A deformationκ̃ ◦ κ̃−1

0 , or a configuratioñκ of the body bundle is given
by the 3+ m smooth functions:

xi = xi(XI), rank

(
∂xi

∂XI

)
= 3, ya = ya(XI, YA), rank

(
∂ya

∂YA

)
= m. (3.1)

For anyx ∈ B, (κ̃ ◦ κ̃−1
0 )(x, ·) is a diffeomorphism of the typical fiberF , that is (κ̃ ◦

κ̃−1
0 )(x, ·) ∈ Diff ∞(F). When a structural groupG that acts on the typical fiberF is assigned,

then we have to assume also that(κ̃ ◦ κ̃−1
0 )(x, ·) ∈ G. With these, the lastm-equations of

(3.1)can be written asya = Lg(Y
A), whereLg is the left translation induced by an element

g ∈ Diff ∞(F) (or g ∈ G).
Our attention now is focused on bundle bodies whose mechanical behavior is local. This

means that the deformation evaluated outside an arbitrarily small neighborhood of each
point ofB does not affect the material response at the point. In particular we consider the
case when the material response is of the first grade that is it involves only the values of the
first derivative of the configuration with respect to the base manifold coordinates.

For a configuratioñκ with Eqs. (3.1)we consider its first order fiber jet

J1
Xκ̃ = (xi,J (X

I), ya(XI, ·), ya,J (XI, ·))
with commas denoting partial derivatives.
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An elastic behavior of a body bundleM is completely characterized by anenergy
functional W . This energy functional is assumed to be given as the integral over the
macromediumB of an energy density functionalw whose independent argument is the
first order fiber jet of the configuration. If dV is the volume-form inR3, then we may write
the energy functional as

W =
∫
κ0(B)

w(J1
Xκ̃;X)dV(X). (3.2)

We note that the energy densityw is still a functional as far as its independence on the
functionsya(XI, ·) and theirX-derivatives is concerned. More precisely, the value ofw

depends on the values ofxi and their derivatives atXI and depends also on the functions
ya(XI, ·) and their derivatives as functions of the fiber coordinatesYA. So, the behavior
of the body bundle is local only with respect to the dependence of the deformation of the
micromedium, but it may be global in terms of its dependence of the deformation of the
micromedium. To emphasize this fact we can write in coordinates the energy densityw as

w = w(xi,J (X
I), ya(XI, ·), ya,J (XI, ·);XI). (3.3)

3.2. Uniformity and material symmetries

As we can see from the formula(3.3) the energy densityw varies from point to point
of the macromediumB, by the dependence ofw on the last argument,X. We can say then
that the two pointsX1 andX2 of B arematerially isomorphic(read “made of the same
material”) if there exists a body bundle diffeomorphismκ̃1,2 such thatκ1,2(X1) = X2 and

w(J1
X2
κ̃ ◦ J1

X1
κ̃1,2;X1) = w(J1

X2
κ̃;X2) (3.4)

for all configurations̃κ. Next, we shall use the notationP(X1, X2) = J1
X2
κ̃1,2. Physically

speaking, this jet (“material isomorphism”) represents a “transplant operation” that achieves
a perfect graft as far as the mechanical behavior is concerned. What has been done is to
cut out a first order neighborhood of the pointX1 including the fiberπ−1(X1) deform it
according to the mapP(X1, X2), and implant it into the place of a similar neighborhood of
X2 and its fiber. The identity(3.4)expresses that the graft has been successful, and this can
only happen if the materials are the same.

Definition 3.1. A body(M, π,B) with microstructure is said to bematerially uniformif all
points ofB are pairwise materially isomorphic.

Consider nowJ1(M,B) the Lie groupoid, with the projectionsα, β : J1(M,B) → B,
introduced inSection 2.3. For a given uniform body bundleM with energy densityw, we
can consider the set of all first order fiber jets representing material isomorphisms, and we
denote it byJ1

w(M,B). We have thatJ1
w(M,B) is a subgroupoid ofJ1(M,B). Our first

assumption now is thatJ1
w(M,B) is a differentiable subgroupoid ofJ1(M,B).

Remark 3.2. For a body bundleM, the property of uniformity is equivalent to the transi-
tivity of J1

w(M,B).
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According to[12] a differentiable groupoid that is transitive is a Lie groupoid. Our second
assumption now is that theJ1

w(M,B) is a Lie subgroupoid ofJ1(M,B). In this case the
mapα × β : J1

w(M,B) → B × B is a surjective submersion, and hence, there exist local
sections. A local section:

P : (X1, X2) ∈ U1 × U2 ⊂ B × B

�→ P(X1, X2) ∈ α−1(X1) ∩ β−1(X2) ⊂ J1
w(M,B) (3.5)

is called a local material uniformity. In this case we say that the body bundle enjoys local
uniformity. We may conclude now with the following proposition.

Proposition 3.3. A body bundle(M, π,B) is uniform if and only if the associated groupoid
J1
w(M,B) is a Lie groupoid.

A body bundle diffeomorphism that maps a pointX of the macromediumB to itself may
happen to have the property that it leaves the material response atX unchanged. For such
a diffeomorphism, its first order fiber jet will define a material symmetry atX.

Definition 3.4. For a body bundle(M, π,B) a material symmetryatX ∈ B is a first order
fiber jetJ1

XΨ , whereΨ is a local fiber diffeomorphism ofM atX and for which the following
identity is true:

w(J1
Xκ̃;X) = w(J1

Xκ̃ ◦ J1
XΨ ;X)

for all configurations̃κ.

We denote byG(X) the set of all material symmetries atX. It is easy to see thatG(X) is
a group with the composition of jets which is called thegroup of material symmetries(or
the isotropy group) atX. We have also that

G(X) = α−1(X) ∩ β−1(X) = {Z ∈ J1
w(M,B);α(Z) = β(Z) = X}.

A material symmetry at a pointX ∈ B is given by a triple(G(X), Lg(X, ·), L(X, ·)).
HereG is an element of the linear group Gl(3,R) and has the meaning of a symmetry
of the macromediumB at X. Lg is the left translation induced by an elementg of the
structural groupG that acts on the fiberπ−1(X) andL(X, ·) is a mixed symmetry of micro-
and macrostructure. So, we have that the material symmetry group is a subgroup of the
semidirect product Gl(3,R) × G× L(R3, LG), where the multiplication law is, according
to (2.3), given by

(G,Lg, L) · (G′, Lg′ , L′) = (GG′, Lgg′ ,LG′ + (Lg)∗L′). (3.6)

The neutral element of this group is(I3, e,0), where e is the neutral element of the
structural groupG. The inverse of an element(G,Lg, L) is given by (G,Lg, L)

−1 =
(G−1, L−1

g ,−(L−1
g )∗LG−1).
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3.3. Homogeneous bodies with microstructure

An equivalent way to define the uniformity for a body bundle is to verify the existence
of the material isomorphisms between points ofB and a fixed pointX0 ∈ B. Let us fix an
archetypal pointX0 ∈ B, but we think this archetypal point as a point carrying the typical
fiber and a first order neighborhood of both. Consider

G(X0) = {Z ∈ J1
w(M,B);α(Z) = β(Z) = X0} = α−1(X0) ∩ β−1(X0) and

J1
X0,w

(M,B) = {Z ∈ J1
w(M,B);α(Z) = X0} = α−1(X0).

According toProposition 2.2we have the following proposition.

Proposition 3.5.

(1) The material symmetry groupG(X0) is a Lie group, diffeomorphic to a Lie subgroup
of Gl(3,R) × G× L(R3, LG).

(2) J1
X0,w

(M,B) is a principal fiber bundle over B with structural groupG(X0) and
projectionβ.

A body bundle is locally uniform if the principal fiber bundleJ1
X0,w

(M,B) admits local
sections:

P : X ∈ U ⊂ B �→ P(X) = P(X0, X) ∈ β−1(X) ⊂ J1
X0,w

(M,B).

Let (xi) be the coordinates of the archetypal pointX0 andya the fiber coordinates along the
typical fiber. A uniformity field can be written then as

P(X) = (GI
i , Y

A(X, ·), LA
i (X, ·)).

HereYA(X, ·) andLA(X, ·) are functions ofya.
We have seen in the previous section that the concept of uniformity was introduced to

translate the idea that “all points of the body bundle are made of the same material”. A
stronger concept than this is the concept of homogeneity which means that “there exists a
reference configuration in which the energy density functionalw is independent of position”.
Of course a homogeneous body bundle is uniform (there are local versions for these concepts
with the same implication). In a more precise way we introduce the following definition.

Definition 3.6. A body bundle(M, π,B) is said to be homogeneous with respect to a given
fiber frame of an archetypal pointX0 if it admits a global deformatioñκ such that the first
order fiber jetJ1

Xκ̃
−1 = P(X) is a uniformity field.

This is equivalent to say that the first order fiber jetJ1
Xκ̃

−1 is a section of the principal
fiber bundleJ1

X0,w
(M,B).

According toTheorem 2.6we have the following result.

Theorem 3.7. The body bundle(M, π,B) is homogeneous if and only if the associated
principal fiber bundleJ1

X0,w
(M,B) is integrable.
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Let us consider now a uniformity fieldP(X) = (GI
i (X), YA(X, ·), LA

i (X, ·)) and denote
byP−1(X) = (Gi

I(X), ya(X, ·), La
I (X, ·)) its inverse, given by(2.10). Then if we take into

accountTheorem 2.8we have the following result for the homogeneity of a body bundle.

Theorem 3.8. A body bundle(M, π,B) is homogeneous if and only if there exists a unifor-
mity fieldP(X) = (GI

i (X), YA(X, ·), LA
i (X, ·)) for which the following tensors vanish:

1

2
GI

i

(
∂Gi

J

∂XK
− ∂Gi

K

∂XJ

)
,

1

2

∂YA

∂ya

(
∂La

J

∂XK
− ∂La

K

∂XJ

)
and

∂YA

∂ya

(
∂La

J

∂YB
− ∂2ya

∂YB∂XJ

)
. (3.7)

The tensors(3.7) are called theinhomogeneity tensors. The first tensor(3.7) measures
the inhomogeneity of the microstructure.

If we apply the theory developed in this section for the particular case when the body
bundle(M, π,B) is the tangent bundle(TB, π, B) we recover the theory of second order
materials, as it was developed in[2]. In this case we say that the bodyB has a linear
microstructure.

As the typical fiber in this case isF = R
3 then the functionsYA(X, ·) andLA

i (X, ·) that
appear in a uniformity field are linear with respect to the fiber coordinates(ya) we can write
then a uniformity field as

P(X) = (GI
i (X),HA

a (X), LA
ai(X)).

The inverse of this uniformity field is denoted byP−1 = (Gi
I,H

a
A,L

a
AI). As the second

inhomogeneity tensor(3.7)vanishes if and only if the third one does, we have the following
result that correspond to Theorem 3.8.

Theorem 3.9. A bundle B with linear microstructure is homogeneous if and only if there
exists a uniformity fieldP(X) = (GI

i (X),HA
a (X), LA

ai(X)) for which the following inho-
mogeneity tensors vanish:

1

2
GI

i

(
∂Gi

J

∂XK
− ∂Gi

K

∂XJ

)
, HA

a

(
La

BJ − ∂Ha
B

∂XJ

)
. (3.8)

The inhomogeneity tensors(3.8)have been discovered in[9], the first one is the torsion of a
complete parallelism on the base manifoldB, while the second one appears as the difference
of two parallelisms (linear connections) onB.
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